
Default Options
Changing Window Title and Icon
Loading Assets and Data
Changing Mod Display Names
KubeJS 6.1 Update

Other

You can ship default options from options.txt with KubeJS. This includes keybindings, video
settings, enabled resource packs, controls like autojump and toggle sprint and wierd things like
advanced tooltips.

Why use this instead of just shipping options.txt? If you ship options.txt then the users options will
get overridden every time they update your modpack, where-as KubeJS only sets the options once,
on the first time the modpack boots.

To use it simply make a file called defaultoptions.txt in the kubejs/config folder. Then copy any
lines you want to set by default over from the normal options.txt file. You can also just copy the
entire file if you want to include everything.

A full list of what options the options.txt file can contain is available on the Minecraft Wiki:
https://minecraft.fandom.com/wiki/Options.txt

Default Options

https://minecraft.fandom.com/wiki/Options.txt

Yes, you can do that with KubeJS too.

Here's how to do that in PaintNET:

Image not found or type unknown

Example result:

Image not found or type unknown

Image not found or type unknown

Changing Window Title and
Icon

To change title, all you have to do is change title in kubejs/config/client.properties .

To change icon, you create a kubejs/config/packicon.png image in standard Minecraft texture
size preferably (64x64, 128x128, 256x256, that kind of size).

The image has to be saved as 32-bit PNG, not Auto-detect/24-bit, otherwise you will get a
JVM crash!

Currently incompatible with Fancy Menu!

You can also use KubeJS to load assets from resource packs and data from datapacks! While this
isn't the only method, its one of the easiest. Other options are <TODO: make and link server
datapack load page and client generate assets event page>

The data folder is loaded identically to the data folder in a datapack. If you already have a
datapack just copy the folder(s) from inside the datapacks data folder to KubeJS' data folder.

The assets folder is loaded identically to the assets folder in a resourcepack. If you already have a
resourcepack just copy the folder(s) from inside the resourcepacks assets folder to KubeJS' assets
folder.

Loading Assets and Data

Yes, it's cursed, but possible!

In a startup script, add this line:

This is useful when you add a bunch of items with KubeJS but want them to show your modpack
name instead of "KubeJS"

And yes, you can change name of other mods as well:

Changing Mod Display
Names

Platform.mods.kubejs.name = 'My Modpack Name'

Platform.mods.botania.name = 'Plant Tech Mod'

Scheduled events now take in durations (especially strings such as 200 t for tick
durations as well) for their delays!
NetworkEvents.fromServer and NetworkEvents.fromClient have been merged into
NetworkEvents.dataReceived , which will handle incoming data from the corresponding side
based on the script type.
Registry: event.custom(T) is now event.createCustom(() => T) , which takes in a supplier
rather than an object directly in order to avoid possible early loading of other registry
elements it might depend on. Note that custom still exists, but is HEAVILY discouraged for
this very reason!
Event .cancel() now exits event block - This may be a small change but it may affect
some scripts. Previously it would only mark event as cancelled and didn't do anything, but
now it will act as return; call as well.
Event results have been added! You now have more granular control over how events
work, closer to how they are handled on the Architectury / Minecraft side as well! For
example:

Right now, this new system is only actively used for item right click events, but will be
expanded to more events as time goes on (obviously without breaking scripts, and just
using event.cancel() will still work just fine)!

 ItemEvents.rightClicked('minecraft:stick', event => {

 // (note that only one of these will work at a time since they all immediately

return!)

 event.cancel() // cancels the event and prevents the click from going through

 event.success() // cancels the event and forces the click to go through

 event.exit() // cancels the event without setting a result

 // in events that support custom results like item stacks, you can also do the

following:

 event.success('minecraft:apple') // success + the result is an apple ��

 })

Massive backend rewrites, improved performance a lot - Lat did another pass over
the recipe event and has reworked the way recipes are parsed, as well as fixed async
recipe operations, so you should generally notice a decrease in reload times if all works as
intended! In some cases, recipes should now load even faster with KJS than they do with
just vanilla!

KubeJS 6.1 Update
For script and pack developers

No more tag workarounds! (hopefully) - We have fixed resolving tag ingredients during
the recipe event on first world load and generally improved the way recipe filters work, so
you shouldn't have to use hacky double-reload workarounds anymore (please just... stop
using them already :ioa:)
Registries have been fixed on both Forge and Fabric - We have ironed out some
issues with the registry events, so you should now again be able to properly register
Fluids, modded registries, etc.
Renamed kubejs/logs files from .txt to .log - So you can now have formatting in
VSCode, etc.
Fixed resource and data pack order - User added resource packs and datapacks will
now be above KJS generated packs, so you should be able to change textures and other
things with them.
Added .zip loading from kubjes/data and kubejs/assets - You simply drop a .zip file
in that folder and it will force-load it (above KJS, under user packs)
Moved debugInfo config from kubejs/config/common.properties to
local/kubejsdev.properties . No idea why it was in common properties in first place, its a
debug config for devs.
Improved Platform.mods.modid.name = 'Custom Name' It should work with custom mod IDs
on REI and ModNameTooltip now. You should use Platform.getInfo('custom_mod_id').name
= 'Custom Name' for non-existent mods.
Better recipe integration with ProbeJS - Because of new schema system in KJS, probe
is able to much better display what ingredients go where, with less hacks!
.stage(string) recipe function no longer requires Recipe Stages to work.
Fixed flowing fluid textures on Fabric and other fluid related issues.
Fixed errors being way too long in logs - Believe or not, KJS was not supposed to spit
out 150 lines of errors for each recipe.
Added a new wrapper FluidAmounts for... fluid amounts! For those of you who can't
remember just how many blocks, ingots and nuggets are needed to make a bucket, or
who just want to have cross-platform script compatibility with their scripts (since Fabric
uses "81000 droplets" rather than "1000 mB" for more precise fluid measurements)
Added custom toast notifications - You can use player.notify(title) , (title,
subtitle) or (Notification.make(...)) .
Added /kubejs reload config command - No longer you have to restart the game to
update configs!
Added /kubejs packmode [mode] command - Same as above, but you don't have to
mess with files at all.
Added /kubejs help command - Useful links directly in-game.
Removed /kjs_hand command - Instead added /kjs hand (with space) redirect. Some
might hate this change, but _ is much harder to reach than space, and I'm sure you'll get
used to it quickly and like it better.
Fluid registry .tag() fixed - Now tags flowing fluids too.
You can now replace and match fluids - You must use Fluid.of('minecraft:water')
instead of plain string, but you can use it in both {input: Fluid.of('minecraft:water')}
recipe filter and event.replaceInput('*', Fluid.of('minecraft:water'),
Fluid.of('minecraft:lava')) replace functions for supported recipe types.

Complete rewrite of recipe system - Recipes now use recipe schemas, a new system
that (almost) fully replaces the old RecipeJS objects. More on that in the Discord
announcement
Events now have results for more precise control over return values and we've added a
hasListeners() check for performance reasons. The most noticeable change for you is
going to be that your own events will need to return a EventResult , as well.
Fixed datagen issue - KJS should no longer keep datagens from closing game forever in
dev environment. We truly live in an age of wonders!

From the announcement:

For addon mod developers

Update Primer (sorted by topics, still incomplete):
Recipe Schemas

This is the big one. Recipe schemas completely change the way custom recipe
handlers are registered in KubeJS, and should hopefully also mean a lot less
boilerplate code down the line for you. Each recipe is now defined by a schema
containing a set of recipe components, with those components acting as
"codecs" for the underlying values. For you, this means the following:
- Instead of primarily using RecipeJS subclasses, you will now have to define a
RecipeSchema
 - Each schema uses a set of RecipeKeys, which are named
RecipeComponents with some additional properties like optional default values
and settings for automatic constructor and method generation
 - A RecipeComponent is a reusable definition of a recipe element (such as an
in/output item, a fluid, or even just a number value) that has a role (input,
output, other), a description (for use in addon mods like ProbeJS) and contains
logic for (de)serialisation and bulk recipe operations (i.e. recipe filtering and
replacement). There are lots of standard components provided in the
dev.latvian.mods.kubejs.recipe.component package, including blocks, items and
fluids, generic group and logic components (array, map, and, or), and all kinds of
primitives (including specialised ones such as number ranges and characters)
 - While the recipe schema will generate constructors by default, you can
override this behaviour by defining one yourself using constructor(factory,
keys) . Note that this will stop the default constructor from being generated, so if
you want to keep that, you will have to define it yourself again.
 (A good example of complex custom recipe constructors is
`ShapedRecipeSchema`)

discord://-/channels/303440391124942858/678385948706209822/1125804134281510983
discord://-/channels/303440391124942858/678385948706209822/1125804134281510983
https://www.youtube.com/watch?v=TiWWvDrIpIE

You can download KubeJS 6.1 at https://kubejs.com/downloads!

- While schemas replace RecipeJS on the java side, on the JS side, the user is
still passed a RecipeJS object after creation, with additional autogenerated
"builder" methods for each component to allow for the user to set e.g. optional
values after recipe creation (e.g. event.smelting(...).xp(20).cookingTime(100)).
and you can add even more properties or do additional after-load validation by
overriding the recipe factory entirely!

Download

https://kubejs.com/downloads

